Name	Date	Period

<u>DIRECTIONS</u>: For #1-8, show all work!!! Leave answers in terms of π when necessary in #5-8.

1. Find the LATERAL AREA, TOTAL SURFACE AREA, and VOLUME of a right rectangular prism with length 9, width 2, and height 4.

Lateral	Total	
Area	Surface Area	Volume

2. Find the LATERAL AREA, TOTAL SURFACE AREA, and VOLUME of a right trapezoidal prism with base edges 10, 12, 10, 24, and height 15.

Lateral	Total	
Area	Surface Area	Volume

3. Find the LATERAL AREA, TOTAL SURFACE AREA, and VOLUME of a square pyramid with base edge 12 and lateral edge 10.

Lateral	Total	
Area	Surface Area	Volume

4. Find the LATERAL AREA, TOTAL SURFACE AREA, and VOLUME of a square pyramid with height 16 and slant height 20.

5. Find the LATERAL AREA, TOTAL SURFACE AREA, and VOLUME of a right cylinder with radius 3 and height 11.

Lateral	Total	
Area	Surface Area	Volume

6. Find the LATERAL AREA, TOTAL SURFACE AREA, and VOLUME of a right cone with radius $5\sqrt{3}$ and slant height 10.

Lateral Total
Area _____ Surface Area _____ Volume _____

7. Find the LATERAL AREA and TOTAL SURFACE AREA of a right cone with volume 392π and radius 7.

Lateral	Total
Area	Surface Area

8. Complete the following chart for SPHERES.

	А	В	С
Radius	3		
Surface Area		100π	
Volume			$\frac{4000\pi}{3}$

A spherical scoop of ice cream with diameter 8 cm is placed in/on a cone with diameter 6 cm and height 20 cm. Is the cone big enough to handle all the ice cream if it melts?

In the lines below, explain your plan to determine/prove the correct answer.

10. Show the work that follows your plan and determines/proves the correct answer.

11. Circle exactly one correct answer:

YES

NO

Prisms

Cy	lind	lers
\sim y		CID

Pyramids

Cones

Spheres

Lateral Area	ph
Surface Area	L.A. + 2 <i>B</i>
Volume	Bh

Lateral Area	2π <i>r</i> • <i>h</i>
Surface Area	L.A. + 2(πr²)
Volume	$\pi r^2 \cdot h$

Lateral Area	$\frac{1}{2}pI$
Surface Area	L.A. + <i>B</i>
Volume	$\frac{1}{3}Bh$
$h^2 + a^2 = I^2$	
$l^2 + (\frac{1}{2}b)^2 = (lateral\ edge)^2$	
$h^2 + r^2 = (lateral\ edge)^2$	

Lateral Area	$\frac{1}{2}(2\pi r) \cdot / \text{ or } \pi r \cdot /$
Surface Area	L.A. + (πr^2)
Volume	$\frac{1}{3}(\pi r^2)h$

$$h^2 + r^2 = I^2$$

Surface Area	4π <i>r</i> ²
Volume	$\frac{4}{3}(\pi r^3)$